Chromosome analysis is essential for diagnosing genetic disorders. For hematologic malignancies, identification of somatic clonal aberrations by karyotype analysis remains the standard of care. However, karyotyping is costly and time-consuming because of the largely manual process and the expertise required in identifying and annotating aberrations. Efforts to automate karyotype analysis to date fell short in aberration detection. Using a training set of ~10k patient specimens and ~50k karyograms from over 5 years from the Fred Hutchinson Cancer Center, we created a labeled set of images representing individual chromosomes. These individual chromosomes were used to train and assess deep learning models for classifying the 24 human chromosomes and identifying chromosomal aberrations. The top-accuracy models utilized the recently introduced Topological Vision Transformers (TopViTs) with 2-level-block-Toeplitz masking, to incorporate structural inductive bias. TopViT outperformed CNN (Inception) models with >99.3% accuracy for chromosome identification, and exhibited accuracies >99% for aberration detection in most aberrations. Notably, we were able to show high-quality performance even in "few shot" learning scenarios. Incorporating the definition of clonality substantially improved both precision and recall (sensitivity). When applied to "zero shot" scenarios, the model captured aberrations without training, with perfect precision at >50% recall. Together these results show that modern deep learning models can approach expert-level performance for chromosome aberration detection. To our knowledge, this is the first study demonstrating the downstream effectiveness of TopViTs. These results open up exciting opportunities for not only expediting patient results but providing a scalable technology for early screening of low-abundance chromosomal lesions.
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
Deep motion forecasting models have achieved great success when trained on a massive amount of data. Yet, they often perform poorly when training data is limited. To address this challenge, we propose a transfer learning approach for efficiently adapting pre-trained forecasting models to new domains, such as unseen agent types and scene contexts. Unlike the conventional fine-tuning approach that updates the whole encoder, our main idea is to reduce the amount of tunable parameters that can precisely account for the target domain-specific motion style. To this end, we introduce two components that exploit our prior knowledge of motion style shifts: (i) a low-rank motion style adapter that projects and adjusts the style features at a low-dimensional bottleneck; and (ii) a modular adapter strategy that disentangles the features of scene context and motion history to facilitate a fine-grained choice of adaptation layers. Through extensive experimentation, we show that our proposed adapter design, coined MoSA, outperforms prior methods on several forecasting benchmarks.
translated by 谷歌翻译
人群中的人类轨迹预测提出了建模社交相互作用和输出无碰撞多模式分布的挑战。在社会生成对抗网络(SGAN)成功之后,最近的作品提出了各种基于GAN的设计,以更好地模拟人群中的人类运动。尽管在降低基于距离的指标方面的性能卓越,但当前网络仍无法输出社会可接受的轨迹,这是模型预测中的高碰撞所证明的。为此,我们介绍了SGANV2:改进的符合安全性的SGAN架构,配备了时空交互模型和基于变压器的鉴别器。时空建模能力有助于更好地学习人类的社交互动,而基于变压器的歧视器设计改善了时间序列建模。此外,SGANV2即使在测试时间也通过协作抽样策略来利用学到的歧视者,该策略不仅完善了碰撞轨迹,而且还可以防止模式崩溃,这是GAN训练中的常见现象。通过对多个现实世界和合成数据集进行广泛的实验,我们证明了SGANV2提供社会兼容的多模式轨迹的功效。
translated by 谷歌翻译
我们给出了\ emph {list-codobable协方差估计}的第一个多项式时间算法。对于任何$ \ alpha> 0 $,我们的算法获取输入样本$ y \ subseteq \ subseteq \ mathbb {r}^d $ size $ n \ geq d^{\ mathsf {poly}(1/\ alpha)} $获得通过对抗损坏I.I.D的$(1- \ alpha)n $点。从高斯分布中的样本$ x $ size $ n $,其未知平均值$ \ mu _*$和协方差$ \ sigma _*$。在$ n^{\ mathsf {poly}(1/\ alpha)} $ time中,它输出$ k = k(\ alpha)=(1/\ alpha)^{\ mathsf {poly}的常数大小列表(1/\ alpha)} $候选参数,具有高概率,包含$(\ hat {\ mu},\ hat {\ sigma})$,使得总变化距离$ tv(\ Mathcal {n}(n})(n}(n})( \ mu _*,\ sigma _*),\ Mathcal {n}(\ hat {\ mu},\ hat {\ sigma}))<1-o _ {\ alpha}(1)$。这是距离的统计上最强的概念,意味着具有独立尺寸误差的参数的乘法光谱和相对Frobenius距离近似。我们的算法更普遍地适用于$(1- \ alpha)$ - 任何具有低度平方总和证书的分布$ d $的损坏,这是两个自然分析属性的:1)一维边际和抗浓度2)2度多项式的超收缩率。在我们工作之前,估计可定性设置的协方差的唯一已知结果是针对Karmarkar,Klivans和Kothari(2019),Raghavendra和Yau(2019和2019和2019和2019和2019年)的特殊情况。 2020年)和巴克西(Bakshi)和科塔里(Kothari)(2020年)。这些结果需要超级物理时间,以在基础维度中获得任何子构误差。我们的结果意味着第一个多项式\ emph {extcect}算法,用于列表可解码的线性回归和子空间恢复,尤其允许获得$ 2^{ - \ Mathsf { - \ Mathsf {poly}(d)} $多项式时间错误。我们的结果还意味着改进了用于聚类非球体混合物的算法。
translated by 谷歌翻译
战略行为是需要某种形式的同伴评估的各种现实应用程序中的一个基本问题,例如家庭作业的同伴评分,赠款提案审查,科学论文的会议同行评审以及组织中员工的同行评估。由于个人的工作与他们正在评估的提交竞争,因此他们可能会提供不诚实的评估以增加自己提交的相对地位。通常通过对个人进行分区并将其分配以评估来自不同子集的人的工作来解决此问题。尽管此方法可确保防止战略性,但每个提交都可能需要不同类型的专业知识才能有效评估。在本文中,我们专注于寻找评估者的分配,以最大程度地提高分配的评估者的专业知识,但受到战略范围的限制。我们分析了战略型的价格:即,为了获得策略性抗辩性,所需的分配评估者的专业知识的妥协数量。我们建立了几种多项式时间算法,用于策略性分配以及​​任务质量的保证。最后,我们评估了会议同行评审数据集中的方法。
translated by 谷歌翻译
我们给出了第一个多项式时间和样本$(\ epsilon,\ delta)$ - 差异私有(DP)算法,以估计存在恒定的对抗性异常分数的平均值,协方差和更高的时刻。我们的算法成功用于分布的分布系列,以便在经济估计上满足两个学习的良好性质:定向时刻的可证明的子销售,以及2度多项式的可证式超分子。我们的恢复保证持有“右仿射效率规范”:Mahalanobis距离的平均值,乘法谱和相对Frobenius距离保证,适用于更高时刻的协方差和注射规范。先前的作品获得了私有稳健算法,用于界限协方差的子静脉分布的平均估计。对于协方差估算,我们的是第一算法(即使在没有异常值的情况下也是在没有任何条件号的假设的情况下成功的。我们的算法从一个新的框架出现,该框架提供了一种用于修改凸面放宽的一般蓝图,以便在算法在其运行中产生正确的正确性的证人,以满足适当的参数规范中的强烈最坏情况稳定性。我们验证了用于修改标准的平方(SOS)SEMIDEFINITE编程放松的担保,以实现鲁棒估算。我们的隐私保障是通过将稳定性保证与新的“估计依赖性”噪声注入机制相结合来获得,其中噪声比例与估计的协方差的特征值。我们认为,此框架更加有用,以获得强大的估算器的DP对应者。独立于我们的工作,Ashtiani和Liaw [Al21]还获得了高斯分布的多项式时间和样本私有鲁棒估计算法。
translated by 谷歌翻译
我们研究了优化高度光滑的凸起功能的复杂性。对于正面整数$ P $,我们想找到$ \ epsilon $ - 占凸函数$ f $的批量最低,假设$ p $ th衍生物的oracle$ f $是lipschitz。最近,三个独立的研究小组(江等,2019年,Plmr 2019; Gasnikov等,Plmr 2019; Bumr 2019,Plmr 2019)开发了一种用$ \ tilde {o}解决这个问题的新算法(1 / \epsilon ^ {\ frac {2} {3p + 1}})$ Oracle呼叫常量$ p $。已知这是用于确定性算法的最佳(最多为日志因子),但是已知的随机算法的下限与此绑定不匹配。我们证明了一个与此绑定(最多为日志因子)匹配的新绑定,并且不仅适用于随机算法,而且不仅适用于量子算法。
translated by 谷歌翻译
调查深度神经网络的损失景观往往是费力的。这项工作记录了我们的用户驱动方法,以创建一个半自动化此过程的平台。Wordplot以CSV的形式接受数据,并允许在同步中操纵损耗函数的多个培训的最小值。其他功能包括一个简单而直观的复选框UI,摘要统计信息,以及控制其他方法不提供的剪辑的能力。
translated by 谷歌翻译
尽管加强学习进展(RL)进展,但自主驾驶(广告)的开发算法仍然具有挑战性:缺乏能够培训的开源平台和有效地验证RL政策的关键问题之一。我们提出了一个用于开发自动驾驶的RL算法的开源Openai健身房兼容环境,用于开发RL算法。DriverGym提供访问超过1000小时的专家记录数据,并支持反应和数据驱动的代理行为。使用我们广泛灵活的闭环评估协议,可以在真实数据上轻松验证RL策略的性能。在这项工作中,我们还提供了使用监督学习和RL的行为克隆基线,驾驶员培训。我们制作驱动程序代码,以及公开的所有基线,以进一步刺激社区的发展。
translated by 谷歌翻译